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Let T be an identity preserving Schwarz map on a C*-algebra. The following 
conditions are proved to be equivalent: (a) T is uniformly ergodic with 
finite-dimensional fixed space. (b) T is quasi-compact. 

1. Let E be a Banach space. An operator  T U  ~ ( E )  is called uniformly 

ergodic (resp. strongly ergodic) if the averages 

n--I  

% : = n ' ~  T ~ (n~N) 
k = 0  

converge in the uniform operator  topology (resp. strong operator  topology). The 

limit P of the sequence (T,)  is called the ergodic projection associated with T 

and satisfies 

p = p2 = P T  = TP. 

It follows that P is a projection onto the fixed space 

F ( T ) : = { x  E E : Tx =x} ,  

An operator  T E ~ ( E )  is called quasi-compact  if there exists a compact 

operator  K on E and a natural number m such that 

liT m - K I I <  1. 

Under  the assumption that (n- '  II T" [I) converges to zero T is quasi-compact iff 

the peripheral spectrum or(T)N F of T contains only poles of the resolvent 

R(/I, T) of first order with finite-dimensional eigenspaces, whereas T is uni- 

formly ergodic lit 1 is a pole of the resolvent of order  at most one ([2, App. W.], 
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[3, VIII. 8]) or iff ( I - T ) E  is closed ([7]). Thus quasi-compactness implies 

uniform ergodicity but not conversely, even if the fixed space of T is finite- 

dimensional. 
If a C*-algebra is commutative it is a Banach lattice ([14]) and, by [9], a 

positive contraction with F(T) finite-dimensional is quasi-compact if and only if 

it is uniformly ergodic. Since a non-commutative C*-algebra is not a Banach 

lattice, the aim of this paper is to extend this surprising result to arbitrary 

C*-algebras. 
For the definitions and notations concerning the spectrum o'(T), resolvent set 

p(T), spectral radius r(T), resolvent R(A, T), pole of the resolvent, etc., of a 

bounded operator T on a (complex) Banach space E we refer to Dunford- 

Schwartz [3]. We recall specifically that the approximate point spectrum A~r(T) is 

the set of all a E C for which there exists a normalized sequence (x,) in E such 

that l i m , ] ] ( a - T ) x , ] ] = 0 .  In particular, the point spectrum P~r(T) and the 

peripheral spectrum or(T) A r(T)F are contained in Act(T), where F is the set of 

all complex numbers of modulus one. 
The C*-algebras under consideration are always unital. If 92 is a C*-algebra 

with positive cone 92.:={x*x :x E92}, a map T ~ ( 9 2 )  is called positive, if 

T(92+) C_ 92+ and is called a Schwarz map, if T(x)T(x)* <_ [I TI] T(xx *) for every x 

in 92. Recall that every positive map on a commutative C*-algebra is a Schwarz 

map (see, e.g., [14, IV.3.9]). 

2. The main result of this section concerns the eigenspaces pertaining to 

peripheral eigenvalues of identity preserving Schwarz maps with finite- 

dimensional fixed-spaces. Let us first recall some facts about w*-continuous 
linear forms on a W*-algebra 92. Let ~0 @ 92,, 92, the predual of 92. Then there 

exists a positive linear form I q~1~92, and a partial isometry u E ~  uniquely 

determined by the conditions 

~(x)=l~l(xu)=:(R.[~l)(x) (x~92) 
u*u =s(l~l) 

where s(Iq~ [) is the support projection of I~]. We refer to this as the polar 
decomposition of q~ ([13, 5.16]). For the polar decomposition of ~o*, where 

q~*(x) = q~(x*)* (x E92), we obtain 

r  = R . . [ ~ * [ ,  [~*1 = L . ' R . I ~ I ,  uu* = s ( ] ~ * [ )  

([13, E.5.10]), where for a E 92 the maps R, (resp. L, )  are given by (x ~ xa)  

(resp. (x ~ ax)). In addition 19~ [ is uniquely determined by the properties 
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I1~ II = II1~ III 

I ,P (x )12 - -< l l , ; l l l ~ l (xx* )  ( x ~ )  

([13, E.5.111, [14, III.4.6]) 

2.1. PROPOSITION. Let  ~ be a W*-algebra,  let T E ~ ( ~ , I )  be an identity 

preserving Schwarz  m a p  with preadjoint T ,  E ~(~[ , ) ,  let a be a peripheral 

eigenvalue of  T ,  and let q~ E ker(a - T , )  be o f  norm one with polar decomposi-  

tion ~p = R ,  I ~o I. Then the following assertions hold : 

(a) I~ol and [~o*l are elements  of  F ( T , ) .  

(b) Suppose T(s([ q~ ])~) C s([ q~ I)9-1 and suppose there exists a fai thful  fami ly  

of  T , - i nvar ian t  states on ~ .  Then (a * T ) ( x )  = u * T ( u x )  = (L, ,o T o L , ) ( x )  for 

all x E s(l q~ [9~) and s(I q~ * I)~)~ is T-invariant.  

PROOF. (a) Using the Schwarz inequality for T we obtain for x E ~l: 

I , p ( x ) l  ~ = I , p (Tx ) l  ~ < - _ l ~ [ ( ( T x ) ( T x ) * )  <- ( T ,  I ~ [)(xx *). 

Because 11 ~ 1} = 1 ~o [ (1) = [ ~o I (Vl)  = [1 T ,  I~o [ H, it follows that I~o ]E F ( T , )  by the 
characterization ment ioned above. 

(b) Suppose T(s([  q~ I)~) C_ s(I ~0 I)gL We show first Tu* = au* .  Using the 
Schwarz inequality we obtain 

(Tu*  - a u * ) ( T u *  - au*)*  <- T ( u * u )  + u*u  - a u * ( T u ) -  a *(Tu*)u.  

Because [~o1@ F ( T , ) ,  q~ E ker(a  - T , )  and ~o* E ker(a* - T , )  it follows that 

I~ [((Tu* - o~u*)(Tu* - au*)*)  

-< 21 q~ [ (u* u) - a I~l(u  * ( r u ) )  - a * [ ~ I ((Wu*)u) 

= 2] ,~ I (u* u ) -  ~ * ( u ) -  ~(u *) 

= 2 [ ~ ] ( u * u ) - 2 l ~ o l ( u * u )  

=0.  

Since u * E s ([ q~ 1)9s 

0 <= (Tu*  - a u * ) ( T u *  - au*)*  E s(] ~o I)gAs (I q~ I), 

and because ]q~l is faithful on the W*-algebra s( [ r  ])gAs([q~ [), it follows that 

(Tu*  - a u * ) ( T u *  - au*)* = 0 

which implies Tu* = au  *. 
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For x, y E 9.1 define 
B(x, y) = T ( x y * ) -  T(x)T(y)*. 

Then B (. ,. ) is a sesquilinear, positive map from 91 x 91 in 91 satisfying 

B(x ,x )=O i f f B ( x , y ) = 0  for all y E 91. 

To prove this one has only to note that qJoB is a positive, hermitian 

sesquilinear form on 91 for every ~b @ 91". Hence ~(B(x, x)) = 0 iff ~(B(x, y)) = 

0 for all y @ 91. Since 91" is generating, the assertion follows. 

Because of T(uu*)>= uu* and because the family �9 is faithful and consists of 

T,-invariant states, it follows that T(uu*)= uu* and similarly T.((uu*)2) = 

(uu *)2. Therefore B (u, x ) = 0 and B (uu *, x) = 0 for all x E 91. Thus u * T(ux ) = 
a*T(x )  for all x E s([q~])91 since s(1~[)91 is T-invariant, and T(s([q~*[)91)C_ 
s(I,;*1)91. �9 

2.2. THEOREM. Let 91 be a W*-algebra and let T E ~(gJ) be an identity 
preserving Schwarz map with preadjoint T ,  E ,,~(91,). If  the fixed space of T ,  is 
finite-dimensional, then dim ker(a - T , )  _-< dim ker F(T , )  for all a @ C of mod- 
ulus one. 

PROOF. Let ~:={[~b[:~b ~ F ( T , ) }  and let us first assume �9 to be faithful. 

Since then T ,  is strongly ergodic on 91, ([6]), dim F ( T , ) =  dim F ( T ) <  oo. 
Using the sesquilinear mapping B ( . , . )  introduced in the proof of Proposition 

2.1(b), it is easy to see that F(T) is a finite-dimensional C*-subalgebra of 91. 

Hence we can decompose F(T) into the direct sum 

m 

F(T) = 0 Mk 
k = l  

where each Mk is isomorphic to the C*-algebra of all nk • nk-matrices and 

where the sequence {nl,"" ", nm} of positive integers is uniquely determined by 

F(T) (up to a permutation) ([14, 1.11.2]). Thus there exists a sequence 

{p l , ' " , p , }  of mutually orthogonal, minimal projections in F(T) such that 

r = E?~I ni and E~=1 pj = 1. Since F(T) is a C*-subalgebra of 91 these projections 

are mutually orthogonal in 91 with sum 1. 

Because of T(pj) = pj (1 _-<j _-< r) it follows that T(pjx) = piT(x) for all x E 91. 

Thus the w*-closed right ideal 91j:-- pj91 is T-minimal, i.e., if 91 C_ 91j is another 

T-invariant w*-closed right ideal then 9t is equal to {0} or 91j. 

For jE{k : l<=k<=r}  consider ~:={Lp3b:~b~91 ,} and note that 91,= 

~ ~. and T , ( ~ )  C ~ .  If ~ E ~ with polar decomposition q~ = R,  [q~], then 

it is easy to see that I le and u*u <pj. In particular, u*E91j.  Let 
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m 

a ~ Po'(T,) A F; since Po - (T , )  = [.Jj=, Po-(Tjz,) there  exists a j E { k  : 1 -< k = r} 

and a normal ized q~ E '~ such that  Tq~ = aq~. Let  

~l~j :={x ~ 9 t j  : t,p l(xx*) = 0}, 

then ~)~l~t is a w*-closed right ideal conta ined in 9lj, which is T-invariant ,  since 

I q~l~ F ( T , )  (Proposi t ion 2.1 (a)). The re fo re  ~J~l~l = {0}, which implies s([ g~l) = PJ. 

By Proposi t ion 2.1 (b) 

(*) ((x * T)(x ) = (L..o To L, )(x ) 

for all x E N j .  Since s ( l ~ * l ) ~  is T-invariant  (Proposi t ion 2.1(b)), R .  is a 

bijection from s([,p I),,)t onto  s(] q~*l)91 with inverse R. .  and because of 

dim F(TI,~I~.,j~,) =< dim F(T) 

it follows that 

for  all 

dim ker (a  - TI.%) --< dim F(T) 

1 _-<j =< r. Since ?I = @~"=, 9t, this implies 

dim ke r (a  - T)  _-< dim F(T). 

Because dim ker (a  - T,)=< dim ker (a  - T)  (see, e.g., Proposi t ion 3.1), 

dim ker (a  - T , )  -< dim F(T , )  

for all a E C of modulus  one. 

For  the general  case let p : =  sup{s(] to t ) : to  E F ( T , ) } .  Then  Tp >-_ p because 

T(s (1 to ])) --> s ([ tO 1) for  all to E F(T,) .  We claim that the map Tp on Ple:= p ~ p  
given by 

(x ~ p(Tx)p), x E ~lp 

is well defined,  is identi ty preserving and is a Schwarz map. In o rder  to see that  

Tp is well defined note  that for  y ~ 91: 

p(Ty - T(pyp)p) = p ( T ( y ( 1  - p))  + T((1 - p )yp) )  = 0 

because the right ideal (1 - p)~[ and the left ideal ~.1(1 - p)  are T-invariant .  Tp is 

identi ty preserving because Tp(p) <-_ p and *rp,a.p is faithful. Since Tp = O o To O 

where  O is the Schwarz map (x ~ pxp), Tp is a Schwarz map.  If ~o E p~l,p then 

for all y e l l  

q~(Ty) = q~(p(Ty)p)= q~(p(T(pyp))p)= ~(T(pyp)) 
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hence T , ~  E pg.l,p. The dual Banach space of p91,p is 9/p. Therefore  the 

adjoint of T,jtp,.p) is Tp. If a E C is of modulus one and q~ E ker(a  - T , ) ,  

then q~ EpPl ,p  because s(Iq~l)  and s(Iq~*~l) are majorized by p. Thus 

k e r ( a - T , ) C _ p 2 I , p  for all such a. Since the family �9 is faithful on the 

W*-algebra 9/p the theorem is proved. �9 

3. In this section we give a proof of our main theorem. First we need some 

preparations which we state separately. The result of our first proposition is well 

known ([15]), but for the convenience of the reader we give a (different) proof. 

3.1. PROPOSITION. Let T be a contraction on a Banach space E 

with adjoint T*E~LP(E*). Then for every peripheral eigenvalue a of 7, 
ker(a  - T*) separates the points of ker(a - T). In particular, dim ker(a - T)=< 

dim ker(a  - T*). 

PROOF. Since for every a E C of modulus one k e r ( a -  T ) =  F(a*T)  it 

suffices to prove that F(T*) separates the points of F(T). Let LI be an ultrafilter 

on [1,~) which converges to 1. Since the unit ball U ~ of E is t r (E*,  E)-compact  

and invariarlt under T*, there exists for each ~z E U ~ 

~o: = lim (A - 1)R (A, T*)O. 

Since T* is t r (E* ,E)-cont inuous  and 

T*R(A, T*)= AR(A, T * ) -  IE. 

we conclude ~boE F(T*). Now take O# XoE F(T) and choose ~b ~ U ~ such that 

~b(Xo) = 1. From the considerations above it follows that 

r = lira (a - 1)~p(R (a, T)xo) = 4t(xo) = 1, 

hence 0 fi ~Oo E F(T*) and F(T*) separates the points of F(T). 

In the proof of our main theorem we use the so-called ultrapower /~ of a 

Banach space E with respect to a free ultrafilter 1l on N. For the construction of 

/~ we refer to [11, V.1.4]. Recall in particular that for T E S f ( E )  we have 

t r (T)  = tr(7") and Art(T) = A ~ ( T )  --- P~(5 h) where T is the canonical extension 

of T to /~. 

3.2. PROPOSITION. Let E be a Banach space and T E ~(E) .  If  ot ~ Ptr(T) 

and dim ker(a - J') < 0% then the following hold : 
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(a) a E P~r(T) and dim k e r ( a  - T)  = d im k e r ( a  - T). 

(b) I f  T is a contraction and J a [ = 1 then a is a pole of the resolvent R (A, T). 

PROOF. (a) Let  a E P ~ r ( T )  and suppose  d i m k e r ( a - T ) < ~ .  We  p rove  

first that  a E P~r(T). Let  (x , )  be a normal ized  sequence  in E such that  

l im, II(,  - T)x,  II = 0. Since a ~ P~r(T) as soon as (x , )  has a convergen t  subse- 

quence ,  we assume to the con t ra ry  that  there  is no such subsequence .  Thus  we 

may  assume that  there  exists 6 > 0  such that  IIx~ -> ~ for all posi t ive 

integers n l ~  n2. For  i E N  let s be  the image of (x,+~) in /~ and note  that  

~, E k e r ( a -  7") with I1 ,11 = 1. Since k e r ( a -  7") is f in i te-dimensional  the se- 

quence  ( s  has an accumula t ion  point  in k e r ( a  - T). Thus  there  exist posi t ive 

integers/ '~ </'~ such that  

&ll  a12 

which leads to a contradict ion.  H e n c e  we p roved  c~ E P~r(T). 

Obvious ly  dim k e r ( a  - T)  =< dim ke r ( a  - 7~). If 

d im k e r ( a  - T)  < dim k e r ( a  - "if') 

then  there  exist 3, > 0 and a normal ized  ~ E k e r ( a  - T)  with the p rope r ty  

3' <= [I i - )3 ]l for  all y E k e r ( a  - T). 

Since every  ( x . ) E i  has a convergen t  subsequence  by the result  of the last 

pa ragraph ,  there  exists 0 ~ z E k e r ( a  - T)  such that  

3' - I I  - )3 II for  all y ~ k e r ( a  - T),  

a contradict ion.  Thus  dim k e r ( a  - T)  = dim k e r ( a  - T)  as desired.  

(b) Let  d i m k e r ( a  - T . )=  n and choose  x ~ , . . . ,  x, l inearly i ndependen t  of 

k e r ( a  - T). By Proposi t ion  2.1 there  exists q ~ , . . . ,  q~. in k e r ( a  - T*)  such that  

q~, (xj) = 6,.j (i, ] = 1 , " - ,  n).  Le t  M:  = r"l ~=1 ker  ~pi, then E = k e r ( a  - T ) O  M and 

T(M)C_M.  We claim a ~ o - ( T i M ) ;  for  if a Eg(TpM),  then  there  exists an 

approx ima t ive  e igenvec tor  sequence  (y , )  in M per ta in ing to a. Since by the 

p roof  of (a) this sequence  has a convergen t  subsequence ,  M M k e r ( a  - T ) ~  {0}, 

a contradict ion.  But  a is a pole of the resolvent  R ()t, TIkor~o-r~), thus a pole of 

R (s  T), �9 

3.3. THEOREM. Let T be an identity preserving Schwarz map on a C*-algebra 

9,1. Then the following assertions are equivalent: 

(a) T is uniformly ergodic with finite-dimensional fixed space. 

(b) T is quasi-compacr 
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(c) The peripheral spectrum of T consists entirely of poles of the resolvent and 

the corresponding eigenspaces are finite-dimensional. 

PROOF. (a) ~ (C): We select a free ultrafilter 1I on N and embed ~ into the 

H-product fill. If we define 

,~ is a C*-algebra with unit. Since the mapping S ~ S, where S~ = (Sx~ ^ for 

( x , ) E  ~, is an isometric algebra homomorphism from ~ ( ~ )  into ~ ( ~ )  ([11, 

V.1.3]), T is unifbrmly ergodic on ~1 and we have dim F ( T ) = d i m F ( 7 " ) .  

Moreover,  T is a Schwarz mapping on ~l. It is easy to see that the second adjoint 

7 ~** of T is a Schwarz mapping on the W*-algebra ~l**. Therefore the assertion 

follows by using Theorem 2.2, Proposition 3.1 and Proposition 3.2. 

(c) ~ (b): By the assumptions o-(T) A F = {a, , .  �9 a,,} for some m E N, and 

the residuum P~ of the resolvent R(A, T) at ai is of finite rank. Thus (9 = E?=, P~ 

is of finite rank, too. Let T = (9 + R where R = T ( I , ~ - O ) .  Then r ( R ) <  1 so 

there is no E N such that [I R ~ < 1. But T",, = (O + R)",, = S + R ' '  where S is 

compact. Hence there exists a compact operator  K on ~ such that II T ~  K [I < 

1. 

(b) ~ (a): This follows from [3, VIII.8.4]. �9 

3.4. REMARKS. (a) For more results concerning uniformly ergodic maps on 

W*-algebras we refer to [5]. 

(b) In contrast to the commutative situation ([11, V.4.9, 5.5]) the peripheral 

spectrum of T in general is not a union of finite subgroups of F. To see this let M, 

be the C*-algebra of all n x n-matrices and choose a unitary u E iV/,. Then for 

the identity preserving Schwarz operator  T: = (x ~ uxu*), x E M., we obtain 

~r(T) = {A/x* : A,/x @ ~r(u)} which may be non-cyclic. 

(c) If the fixed space of T is infinite-dimensional then there may exist 

elements of the peripheral spectrum of T which are not poles of the resolvent 

R(A,T) .  To see this let, for n E N, A,  be the positive operator  on the 

(commutative) C*-algebra C 2 represented by the matrix 

If ~ is the l~-product of C 2 and if, for x = (x.) E 91, Tx: = (A.x . ) ,  then T is an 

identity preserving Schwarz map with infinite-dimensional fixed space on the 

C*-algebra 91, 1 is pole of the resolvent R(A, T) and ~ ( T ) = { 1 } U {  - 1}U 
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{ -  1 + n - ' :  n EN}. Thus - 1 is not isolated in v-(T) hence not a pole of the 

resolvent R (A, T). 

(d) If we omit the assumption "1 c~l= 1" in Proposition 3.2(b), then c~ is not 

necessarily a pole of the resolvent. For example, let S be an isometry with 

~r(S) = {A E C  : I s  ,=< 1} on a suitable Banach space F, let E = F O C  and let 

T :=  S O 0 .  Then v-(T) = v-(S), ker('P) is finite-dimensional in/~ but 0 is not a 

pole of the resolvent R (A, T). 
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