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UNIFORMLY ERGODIC MAPS
ON C*-ALGEBRAS

BY
ULRICH GROH

ABSTRACT

Let T be an identity preserving Schwarz map on a C*-algebra. The following
conditions are proved to be equivalent: (a) T is uniformly ergodic with
finite-dimensional fixed space. (b) T is quasi-compact.

1. Let E be a Banach space. An operator T € £(E) is called uniformly
ergodic (resp. strongly ergodic) if the averages

n—1
T.=n'> T (n€EN)
k=0

converge in the uniform operator topology (resp. strong operator topology). The
limit P of the sequence (T,) is called the ergodic projection associated with T
and satisfies

P=P=PT=TP
It follows that P is a projection onto the fixed space
F(Ty:={x €E :Tx = x}.

An operator T € #(E) is called quasi-compact if there exists a compact
operator K on E and a natural number m such that

IT" - K||<1.

Under the assumption that (n™'|| T"||) converges to zero T is quasi-compact iff
the peripheral spectrum o(T)NT of T contains only poles of the resolvent
R(A, T) of first order with finite-dimensional eigenspaces, whereas T is uni-
formly ergodic iff 1 is a pole of the resolvent of order at most one ([2, App. W.],
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[3, VIIL. 8]) or iff (I = T)E is closed ([7]). Thus quasi-compactness implies
uniform ergodicity but not conversely, even if the fixed space of T is finite-
dimensional.

If a C*-algebra is commutative it is a Banach lattice ([14]) and, by [9], a
positive contraction with F(T) finite-dimensional is quasi-compact if and only if
it is uniformly ergodic. Since a non-commutative C*-algebra is not a Banach
lattice, the aim of this paper is to extend this surprising result to arbitrary
C*-algebras.

For the definitions and notations concerning the spectrum o (T), resolvent set
p(T), spectral radius r(T), resolvent R(A, T), pole of the resolvent, etc., of a
bounded operator T on a (complex) Banach space E we refer to Dunford-
Schwartz [3]. We recall specifically that the approximate point spectrum Aa(T) is
the set of all « € C for which there exists a normalized sequence (x,) in E such
that lim, ||(a — T)x.| =0. In particular, the point spectrum Po(T) and the
peripheral spectrum o (T) N r(T)I" are contained in Ao (T), where I' is the set of
all complex numbers of modulus one.

The C*-algebras under consideration are always unital. If % is a C*-algebra
with positive cone U.:={x*x:x €U}, a map T € L(Y) is called positive, if
T(A,) C U, and is called a Schwarz map, if T(x)T(x)* =|| T|| T(xx*) for every x
in 2. Recall that every positive map on a commutative C*-algebra is a Schwarz
map (see, e.g., [14, IV.3.9)).

2. The main result of this section concerns the eigenspaces pertaining to
peripheral eigenvalues of identity preserving Schwarz maps with finite-
dimensional fixed-spaces. Let us first recall some facts about w*-continuous
linear forms on a W*-algebra U. Let ¢ €U, , U, the predual of A. Then there
exists a positive linear form |@| €U, and a partial isometry u €% uniquely
determined by the conditions

px)=le|Gu)=:(R]e)(x) (x€A)
u*u=s(el)
where s(]¢|) is the support projection of |¢|. We refer to this as the polar
decomposition of ¢ ({13, 5.16]). For the polar decomposition of ¢*, where
e*(x)=@(x*)* (x €U), we obtain
¢*=R.le*l, |e*|=LceRiel, uu*=s(e*|)

([13, E.5.10]), where for a €U the maps R. (resp. L,) are given by (x + xa)
(resp. (x » ax)). In addition |¢| is uniquely determined by the properties



Vol. 47, 1984 UNIFORMLY ERGODIC MAPS 229

lel=l1e!l
le@) =lelllel (xx*)  (x€W)
(13, E.5.11], [14, 11L.4.6])

2.1. ProPOSITION. Let A be a W*-algebra, let TE ¥ (W) be an ideniity
preserving Schwarz map with preadjoint T, € £(,), let « be a peripheral
eigenvalue of T, and let ¢ Eker(a — T ) be of norm one with polar decomposi-
tion ¢ = R.|¢|. Then the following assertions hold:

(@) || and |@*| are elements of F(T,).

(b) Suppose T(s(|¢ |)A)C s(|e )Y and suppose there exists a faithful family
Y of T «-invariant states on A. Then (a*T)(x)= u*T(ux)=(L.-oTeL,)x) for
all x Es(le |M) and s(|e*)N is T-invariant.

ProoF. (a) Using the Schwarz inequality for T we obtain for x € :

le()f =le(Tx)f =]o [(Tx)(Tx)*) =(T, | [)(xx™).

Because ¢ || =|@[(1)=|¢ [(T1)=|T.|¢|], it follows that [¢ | € F(T,) by the
characterization mentioned above.

(b) Suppose T(s(le|)A)Cs(le|)A. We show first Tu* = au*. Using the
Schwarz inequality we obtain

(Tu* — au*)(Tu* — au*)* = T(u*u) + u*u — au*(Tu) — o *(Tu*)u.
Because | ¢ | € F(T,), ¢ Eker(a — T,) and ¢* Eker(a* — T,) it follows that
lo [ ((Tu* — au*)(Tu* — au*)*)
=2|e|(*u)—ale|(W*(Tu))— a*|¢|((Tu*)u)
=2|@|(u*u)—o*(u)— @ (u*)
=2|el(*u)—2|e|(u*u)
=0.
Since u* Es(|¢ )Y,
0=(Tu* - au*)(Tu* —au*)* €s(le )Us(|¢|),
and because || is faithful on the W*-algebra s(|¢ |)Us(]¢|), it follows that
(Tu* — au*)(Tu* — au*)* =0

which implies Tu™ = au*.
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For x, y €U define
B(x,y)=T(xy*)— T(x)T(y)".

Then B(-,-) is a sesquilinear, positive map from % X% in U satisfying
B(x,x)=0 iff B(x,y)=0 for all y € 9.

To prove this one has only to note that B is a positive, hermitian
sesquilinear form on U for every ¢ € U%. Hence Y (B(x,x)) =0 iff $(B(x,y)) =
0 for all y €Y. Since UF is generating, the assertion follows.

Because of T(uu™)= uu* and because the family W is faithful and consists of
T -invariant states, it follows that T(uu*)= uu* and similarly T((uu*)’)=
(uu*y’. Therefore B(u,x)=0and B(uu*,x) =0 for all x €. Thus u*T(ux)=
a*T(x) for all x € s(|¢ |)A since s(|@|)X is T-invariant, and T(s(|¢*|)A)C
s(le*A. L

2.2. THEOREM. Let W be a W*-algebra and let T € ¥(U) be an identity
preserving Schwarz map with preadjoint T, € £(U,). If the fixed space of T, is
finite-dimensional, then dimker(a — T,) =dimker F(T,) for all « € C of mod-
ulus one.

Proor. Let W:={|¢/|:¢ € F(T,)} and let us first assume ¥ to be faithful.
Since then T, is strongly ergodic on %, ([6]), dim F(T )= dim F(T) < «.

Using the sesquilinear mapping B(-, - ) introduced in the proof of Proposition
2.1(b), it is easy to see that F(T) is a finite-dimensional C*-subalgebra of U.
Hence we can decompose F(T) into the direct sum

F(T)= é M.

where each M, is isomorphic to the C*-algebra of all m, X n,-matrices and
where the sequence {1, -+, n.} of positive integers is uniquely determined by
F(T) (up to a permutation) ([14, 1.11.2]). Thus there exists a sequence
{p1,*++,p} of mutually orthogonal, minimal projections in F(T) such that
r=2"n and 2/_, p; = 1. Since F(T) is a C*-subalgebra of U these projections
are mutually orthogonal in ¥ with sum 1.

Because of T(p;) = p; (1=j =r) it follows that T(px) = p;T(x) for all x €U.
Thus the w*-closed right ideal R;:= p,% is T-minimal, i.e., if R C R, is another
T-invariant w*-closed right ideal then R is equal to {0} or R,.

For j€{k:1=k =r} consider &:={L,y:y €U,} and note that A, =
@i-1 $; and T, (E) C ;. If ¢ € T; with polar decomposition ¢ = R.|¢|, then
it is easy to see that |¢|€ Z; and u*u =p; In particular, u*€R;. Let
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a € Po(T,)NT;since Po(T,)= U,'-';, Po(T\z)thereexistsajE{k : 1=k =r}
and a normalized ¢ € 3, such that Ty = ag. Let

No={x €R; :|o|(xx*) =0},

then %, is a w*-closed right ideal contained in R;, which is T-invariant, since
|¢ | € F(T,) (Proposition 2.1(a)). Therefore N}, = {0}, which implies s (| ¢ |) = p;
By Proposition 2.1(b)

(*) (a*T)(x)=(Lu-oToLu)(x)

for all x €R,. Since s(]¢*|)U is T-invariant (Proposition 2.1(b)), R, is a
bijection from s(|¢

YA onto s(|¢*|)YU with inverse R, and because of
dim F(T|s(44,~\)\)() =dim F(T)
it follows that

dim ker(a — Tiw,) < dim F(T)

for all 1 =j =r. Since A =L, R, this implies

dimker(a — T)=dim F(T).

Because dimker(a — T,) = dimker(a — T) (see, e.g., Proposition 3.1),
dimker(a — T,)=dim F(T,)

for all @ € C of modulus one.

For the general case let p:=sup{s(|¢/|): ¢ € F(T,)}. Then Tp = p because
Ts(y )= s(|¢]) for all y € F(T,). We claim that the map T, on ,:=pAp
given by

(x » p(Tx)p), x€eY,

is well defined, is identity preserving and is a Schwarz map. In order to see that
T, is well defined note that for y €:

p(Ty — T(pyp)p) = p(T(y(1—p))+ T((1 - p)yp)) =0

because the right ideal (1 — p)U and the left ideal % (1 — p) are T-invariant. T, is
identity preserving because T,(p) = p and ¥, is faithful. Since T, = Q°T-Q
where Q is the Schwarz map (x » pxp), T, is a Schwarz map. If ¢ € p¥,p then
for all y €%l

e(Ty)=o(p(Ty)p) = ¢ (p(T(pyp))p) = ¢(T(pyp))
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hence T,¢ € pU,p. The dual Banach space of pU,p is A,. Therefore the
adjoint of Typu, is T, If @ €C is of modulus one and ¢, € ker(a — T4),
then ¢, €EpA.p because s(|¢.|) and s(|¢*%|) are majorized by p. Thus
ker(a — T,)C pU«p for all such a. Since the family ¥ is faithful on the
WH*.algebra 9, the theorem is proved. ]

3. In this section we give a proof of our main theorem. First we need some
preparations which we state separately. The result of our first proposition is well
known ([15]), but for the convenience of the reader we give a (different) proof.

3.1. ProposiTION. Let T be a contraction on a Banach space E
with adjoint T*E€ £ (E*). Then for every peripheral eigenvalue o of T,
ker(a — T*) separates the points of ker(a — T). In particular, dimker(a — T) =
dimker(a — T*).

Proor. Since for every a €EC of modulus one ker(a — T)=F(a*T) it
suffices to prove that F(T*) separates the points of F(T). Let Il be an vltrafilter
on [1, %) which converges to 1. Since the unit ball U° of E is o (E*, E)-compact
and invariantt under T*, there exists for each ¢ € U’

o:=liLrln (A —DRA, T

Since T* is o(E*, E)-continuous and
T*R(A, T*)=AR(A, T*) — Ig-

we conclude ¢, € F(T*). Now take 0 # x, € F(T) and choose ¢ € U’ such that
¥(x0) = 1. From the considerations above it follows that

tho(x0) = Him (A — D (R(A, T)xo) = (%) = 1,
hence 0 # ¢, € F(T*)and F(T*) separates the points of F(T). N

In the proof of our main theorem we use the so-called ultrapower Eofa
Banach space E with respect to a free ultrafilter 11 on N. For the construction of
E we refer to [11, V.1.4]. Recall in particular that for T € £(E) we have
o(T)=o(T)and Ao (T)= Ao (T)= Po(T) where T is the canonical extension
of T to E.

3.2. ProrosiTiON. Let E be a Banach space and TE€ Z(E). If a € Po(T)
and dimker(ax — T) < o, then the following hold:
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(a) a € Po(T) and dimker(a — T) = dimker(a — T).
(b) If Tis a contraction and |« | = 1 then a is a pole of the resolvent R (A, T).

PROOF. (a) Let a € Po(T) and suppose dimker(a —T)<®. We prove
first that « € Po(T). Let (x,) be a normalized sequence in E such that
lim, ||(@ = T)x. || = 0. Since a € Po(T) as soon as (x,) has a convergent subse-
quence, we assume to the contrary that there is no such subsequence. Thus we
may assume that there exists & >0 such that ||x, —x.||= 8 for all positive
integers n, # n,. For i EN let % be the image of (x,..) in E and note that
% Eker(a — T) with | £ =1. Since ker(a — T) is finite-dimensional the se-
quence (%;) has an accumulation point in ker(a — T). Thus there exist positive
integers j, < j such that

1%, — %, [ = 8/2
which leads to a contradiction. Hence we proved « € Po(T).
Obviously dim ker(a — T) = dimker(a — T). If
dimker(a — T) < dimker(a — 7T)

then there exist y >0 and a normalized £ € ker(a — T) with the property

£—y|| forall y Eker(a —T).

Y=

Since every (x.)E€ X has a convergent subsequence by the result of the last
paragraph, there exists 0 # z € ker(a — T) such that

vy=|z-y| forall y Eker(a — T),

a contradiction. Thus dimker(a — T') = dim ker(a — T) as desired.

(b) Let dimker(e —T)=n and choose xi,---,x, linearly independent of
ker(a — T'). By Proposition 2.1 there exists ¢, - -, @, in ker(a — T*) such that
@i (x)=8, (i,j=1,---,n). Let M:= ., ker ¢, then E = ker(a — T) M and
T(M)C M. We claim aZ a(Tm); for if a € (T\u), then there exists an
approximative eigenvector sequence (y,) in M pertaining to a. Since by the
proof of (a) this sequence has a convergent subsequence, M Nker(a — T) # {0},
a contradiction. But « is a pole of the resolvent R(A, Tikern—1)), thus a pole of
R(A, T). ]

3.3. THEOREM. Let T be an identity preserving Schwarz map on a C*-algebra
A. Then the following assertions are equivalent:

(@) T is uniformly ergodic with finite-dimensional fixed space.

(b) T is quasi-compact.
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(c) The peripheral spectrum of T consists entirely of poles of the resolvent and
the corresponding eigenspaces are finite-dimensional.

PrOOF. (a) = (c): We select a free ultrafilter I on N and embed ¥ into the
U-product 9. If we define

[2l=tim [, £l x)EX

9 is a C*-algebra with unit. Since the mapping S+ S, where S£ = (Sx.)" for
(x.) E %, is an isometric algebra homomorphism from Z£(2) into £ (%) ([11,
V.1.3]), T is uniformly ergodic on ¥ and we have dim F(T)=dim F(T).
Moreover, T is a Schwarz mapping on 9. It is easy to see that the second adjoint
T** of T is a Schwarz mapping on the W*-algebra 9(**. Therefore the assertion
follows by using Theorem 2.2, Proposition 3.1 and Proposition 3.2.

(c) = (b): By the assumptions o(T)NT ={a,, -, an} for some m €N, and
the residuum P; of the resolvent R (A, T) at «; is of finite rank, Thus Q =22, P,
is of finite rank, too. Let T = Q + R where R = T(Iy— Q). Then r(R)<1 so
there is n, €N such that ||R™||<1. But T%=(Q + R)»= S+ R"™ where S is
compact. Hence there exists a compact operator K on ¥ such that || T"— K || <
1.

(b) = (a): This follows from [3, VIII.8.4]. |

3.4. REMARKs. (a) For more results concerning uniformly ergodic maps on
W*-algebras we refer to [3].

(b) In contrast to the commutative situation ([11, V.4.9, 5.5]) the peripheral
spectrum of T in general is not a union of finite subgroups of I'. To see this let M,
be the C*-algebra of all n X n-matrices and choose a unitary u € M,. Then for
the identity preserving Schwarz operator T: = (x » uxu*), x € M,, we obtain
o(T)={An™ : A, u € o(u)} which may be non-cyclic.

(c) If the fixed space of T is infinite-dimensional then there may exist
elements of the peripheral spectrum of T which are not poles of the resolvent
R(A, T). To see this let, for n €N, A, be the positive operator on the
(commutative) C*-algebra C* represented by the matrix

(0 1
An_(l_nvl n‘l>-

If A is the ["-product of C* and if, for x = (x,) €YU, Tx:=(A.x.), then T is an
identity preserving Schwarz map with infinite-dimensional fixed space on the
C*-algebra U, 1 is pole of the resolvent R(A,T) and o(T)={1}U{-1}U
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{—14+n"":n€N}. Thus —1 is not isolated in o(T) hence not a pole of the
resolvent R(A, T).

(d) If we omit the assumption “|a | = 1" in Proposition 3.2(b), then « is not
necessarily a pole of the resolvent. For example, let S be an isometry with
o(S)={A €C:|a =1} on a suitable Banach space F, let E = F@C and let
T:=S @0. Then (T)= o (S), ker(T) is finite-dimensional in E but 0 is not a
pole of the resolvent R(A, T).
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